



# COPD Management: Inner City Perspective

### Stephan F van Eeden Centre for Heart & Lung Innovation, UBC, Vancouver





### Faculty/Presenter Disclosure

- Faculty: Stephan van Eeden
- Relationships with financial sponsors:
  - Grants/Research Support: BC Lung Association/CIHR
  - Speakers Bureau/Honoraria: Norvatis 2018
  - Consulting Fees: None
  - Patents: None
  - Other: None

# **Disclosure of Financial Support**

- This program has received no financial or in-kind support..
- **Potential for conflict(s) of interest: None**

# Summary

Introduction

### Management of COPD

- Foundation of management
- Importance of phenotyping
- What medication for what patient? (new guidelines)
- What puffer for what patient?
- Fourth line treatment
- Special management issues in the Inner City population
- Conclusion & discussions





## **GOLD:** Classification of Severity of Airflow Limitation in COPD<sup>\*</sup>



#### In patients with FEV<sub>1</sub>/FVC <0.70

| GOLD Stage | Severity    | Degree of Airflow Limitation              |
|------------|-------------|-------------------------------------------|
| 1          | Mild        | $FEV_1 \ge 80\%$ predicted                |
| 2          | Moderate    | $50\% \leq \text{FEV}_1 < 80\%$ predicted |
| 3          | Severe      | $30\% \leq \text{FEV}_1 < 50\%$ predicted |
| 4          | Very severe | FEV <sub>1</sub> <30% predicted           |

\*Based on post-bronchodilator FEV<sub>1</sub> Used with permission from Global Strategy for Diagnosis, Management, and Prevention of COPD. © 2014 Global Initiative for Chronic Obstructive Lung Disease (GOLD). www.goldcopd.org. Accessed 3/14/14.

# **COPD** Cases 1

- Patient (65yrs) presented with cough and SOB (2 blocks). Smoker (50 pack years)
- Previous PFT's showed FEV1=35% predicted (FEV1/FVC ratio 57%).
- On SAB's (Sabutamol & Ipratropium) prn
- Patient has had one AE the last year
- What management options will you suggest?

# Case 1: Management plan. Arrange in priority from top to bottom.



Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

# **COPD** Cases 1

- Smoking cessation/vaping/cannabis/recreational drugs
- Vaccination
  - Influenza
  - Pneumococcus
- Pulmonary Rehabilitation
- Treatment:
  - SAB vs LAB
  - LAMA
  - LAMA/LABA combination
  - ICS/LABA combination
  - LAMA + ICS/LABA
  - Theophylin/PDE4 inhibitors

# **COPD** Management

| GOLD:<br>Multidimensional Treatment Goals |                                      |  |  |  |  |
|-------------------------------------------|--------------------------------------|--|--|--|--|
| Airflow<br>Obstruction                    | Slow down FEV <sub>1</sub> decline   |  |  |  |  |
| Symptom<br>Burden                         | Minimize symptoms                    |  |  |  |  |
| Functional<br>Limitations                 | Improve QoL                          |  |  |  |  |
| Exacerbation<br>Frequency                 | Prevent and manage exacerbations     |  |  |  |  |
| Redu                                      | ce mortality and hospital admissions |  |  |  |  |

Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2014. www.goldcopd.org. Accessed 3/6/14.

TT/TT



### **Foundation of COPD Management**

- Education
- Smoking cessation
- Vaccination
- Lifestyle changes: activity & diet
- Pulmonary Rehabilitation

# **Pulmonary Rehabilitation**

**PATIENT SURVEY:** Have you participated in a Pulmonary Rehab Program?



**PATIENT SURVEY:** Who referred you to a Pulmonary Rehab Program?



# What medication for what patient?



\*Not discussed; FDA approval granted after the taping of this educational activity Slide courtesy of Sanjay Sethi, MD

Umeclidinium + vilanterol Glycopyrronium +Indacaterol **Theophylline** 

### GOLD: Combined Assessment of COPD



\*Not leading to hospitalization

Used with permission from Global Strategy for Diagnosis, Management, and Prevention of COPD.

© 2014 Global Initiative for Chronic Obstructive Lung Disease (GOLD). www.goldcopd.org.

SOBAL INITIATIVE

OISEASETM



Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2014. www.goldcopd.org. Accessed 3/6/14.

#### Indacaterol–Glycopyrronium versus Salmeterol–Fluticasone for COPD

Jadwiga A. Wedzicha, M.D., Donald Banerji, M.D., Kenneth R. Chapman, M.D.,

| Table 1. Baseline Characteristics of the Patients.*   |                                                         |                                                      |                            |
|-------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------|
| Characteristic                                        | Indacatero <b>–</b><br>Glycopyrronium Group<br>(N=1680) | Salmetero <b>l–</b><br>Fluticasone Group<br>(N=1682) | All Patients<br>(N = 3362) |
| Age — yr                                              | 64.6±7.9                                                | 64.5±7.7                                             | 64.6±7.8                   |
| Male sex — no. (%)                                    | 1299 (77.3)                                             | 1258 (74.8)                                          | 2557 (76.1)                |
| Duration of COPD — yr                                 | 7.2±5.3                                                 | 7.3±5.5                                              | 7.3±5.4                    |
| Use of inhaled glucocorticoids at screening — no. (%) | 954 (56.8)                                              | 939 (55.8)                                           | 1893 (56.3)                |
| Current smoker — no. (%)                              | 664 (39.5)                                              | 669 (39.8)                                           | 1333 (39.6)                |
| Severity of COPD — no. (%)†                           |                                                         |                                                      |                            |
| Group A                                               | 2 (0.1)                                                 | 0                                                    | 2 (0.1)                    |
| Group B                                               | 400 (23.8)                                              | 422 (25.1)                                           | 822 (24.4)                 |
| Group C                                               | 1 (0.1)                                                 | 2 (0.1)                                              | 3 (0.1)                    |
| Group D                                               | 1265 (75.3)                                             | 1249 (74.3)                                          | 2514 (74.8)                |
| Post-bronchodilator FEV1 — liters                     | 1.2±0.3                                                 | 1.2±0.4                                              | 1.2±0.3                    |
| Post-bronchodilator $FEV_1 - \%$ of predicted value   | 44.0±9.5                                                | 44.1±9.4                                             | 44.1±9.5                   |
| Post-bronchodilator ratio of $FEV_1$ to $FVC - \%$    | 41.7±9.8                                                | 41.5±9.9                                             | 41.6±9.9                   |
| Total score on the SGRQ-C‡                            | 47.3±15.8                                               | 47.2±15.9                                            | 47.3±15.8                  |

#### Indacaterol–Glycopyrronium versus Salmeterol–Fluticasone for COPD

Jadwiga A. Wedzicha, M.D., Donald Banerji, M.D., Kenneth R. Chapman, M.D., Jørgen Vestbo, M.D., D.M.Sc., Nicolas Roche, M.D., R. Timothy Ayers, M.Sc., Chau Thach, Ph.D., Robert Fogel, M.D., Francesco Patalano, M.D., and Claus F. Vogelmeier, M.D., for the FLAME Investigators\*

#### **B** Time to First Exacerbation



Week

#### Patients at Risk

| Any exacerbation                |        |      |      |      |      |
|---------------------------------|--------|------|------|------|------|
| Indacaterol-glycopyrronium grou | b 1675 | 763  | 535  | 409  | 281  |
| Salmeterol–fluticasone group    | 1679   | 642  | 415  | 313  | 217  |
| Moderate or severe exacerbation |        |      |      |      |      |
| Indacaterol-glycopyrronium grou | b 1675 | 1299 | 1091 | 948  | 711  |
| Salmeterol–fluticasone group    | 1679   | 1210 | 975  | 820  | 608  |
| Severe exacerbation             |        |      |      |      |      |
| Indacaterol-glycopyrronium grou | b 1675 | 1530 | 1434 | 1368 | 1138 |
| Salmeterol–fluticasone group    | 1679   | 1507 | 1389 | 1303 | 1071 |

# Summary

- Dual long acting bronchodilators (LABA/LAMA) is at least equal to ICS+LABA as treatment in subjects with moderate to severe COPD
- LABA/LAMA in equal to ICS+LABA to reduce COPD exacerbation and most likely better to reduce mild exacerbation
- No difference in "short-term" side effects
- Main critique:
  - Reduction in AECOPD was mainly mild to moderate exacerbation
  - Smallest effect in more severe exacerbation or in subjects with frequent exacerbations

# **Combinations of LAMA/LABA**

Currently FDA approved:

- Anoro (Umeclidinium/Vilanterol)
- Ultibro (Glycopyrronium/indacaterol)
- Inspoilto (Tiotropium/olodaterol)
- Duaklir (Aclidinium/formoterol)







Lung Function (FEV<sub>1</sub>) Impairment





### Can we safely stop inappropriate ICS treatment?

# COPD case 2

- Patient (75yrs) with severe COPD (FEV1 32%)
- No exacerbations over the last 3 years
- On triple therapy for 10 yrs
- Recently develop vertebra fracture and also recently diagnose with DM type II
- Can you stop the ICS safely?

#### Stepwise Withdrawal of ICS Among patients Receiving Triple Therapy (WISDOM Study)



Adapted from Magnussen H, et al. N Engl J Med 2014; 371(14):1285-94.

#### Withdrawal of ICS Patients on Triple Therapy: Moderate or Severe Exacerbations (WISDOM Study)



IGC = Inhaled corticosteroid fluticasone

Adapted from Magnussen H, et al. N Engl J Med 2014; 371(14):1285-94.

### Protocol for withdrawal of ICS in COPD



# What benefit is their adding ICS to dual bronchodilator?

#### Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD

David A. Lipson, M.D., Frank Barnhart, D.V.M., Noushin Brealey, M.D.,

| Table 1. Baseline Characteristics of the Patients (Intention-to-Treat Population).* |                            |                                                |                                           |                              |  |
|-------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|-------------------------------------------|------------------------------|--|
| Characteristic                                                                      | Triple Therapy<br>(N=4151) | Fluticasone Furoate–<br>Vilanterol<br>(N=4134) | Umeclidinium–<br>Vilanterol<br>(N = 2070) | Total<br>(N=10,355)          |  |
| Age — yr                                                                            | 65.3±8.2                   | 65.3±8.3                                       | 65.2±8.3                                  | 65.3±8.3                     |  |
| Female sex — no. (%)                                                                | 1385 (33)                  | 1386 (34)                                      | 714 (34)                                  | 3485 (34)                    |  |
| Body-mass index†                                                                    | 26.6                       | 26.7                                           | 26.6                                      | 26.6                         |  |
| Former smokers — no. (%)‡                                                           | 2715 (65)                  | 2711 (66)                                      | 1342 (65)                                 | 6768 (65)                    |  |
| Moderate or severe COPD exacerbations<br>in the previous yr — no. (%)               |                            |                                                |                                           |                              |  |
| 0                                                                                   | 2 (<1)                     | 5 (<1)                                         | 2 (<1)                                    | 9 (<1)                       |  |
| 1                                                                                   | 1853 (45)                  | 1907 (46)                                      | 931 (45)                                  | 4691 (45)                    |  |
| 2                                                                                   | 1829 (44)                  | 1768 (43)                                      | 890 (43)                                  | 4487 (43)                    |  |
| ≥3                                                                                  | 467 (11)                   | 454 (11)                                       | 247 (12)                                  | 1168 (11)                    |  |
| ≥2 Moderate COPD exacerbations<br>in the previous yr — no. (%)                      | 1967 (47)                  | 1921 (46)                                      | 989 (48)                                  | 4877 (47)                    |  |
| ≥1 Severe COPD exacerbation in the previous yr — no. (%)                            | 1087 (26)                  | 1069 (26)                                      | 515 (25)                                  | 2671 (26)                    |  |
| ≥2 Severe COPD exacerbations in<br>the previous yr — no. (%)                        | 147 (4)                    | 148 (4)                                        | 76 (4)                                    | 371 (4)                      |  |
| Postbronchodilator FEV <sub>1</sub> — % of<br>predicted normal value                | 45.7±15.0                  | 45.5±14.8                                      | 45.4±14.7                                 | 45.5±14.8                    |  |
| Mean score on the COPD Assessment                                                   | 20.1±6.1                   | 20.1±6.1                                       | 20.2±6.2                                  | 20.1±6.1                     |  |
| Test at screening)                                                                  |                            |                                                | This article w<br>at NEJM.org.            | as published on April 18, 20 |  |

## **IMPACT-Study**



Figure 1. Moderate or Severe COPD Exacerbations (Intention-to-Treat Population).

I bars indicate 95% confidence intervals. COPD denotes chronic obstructive pulmonary disease, FF fluticasone furoate, UMEC umeclidinium, and VI vilanterol.

## The IMPACT study:

10,355 patients Primary endpoint reduction in rate of on-treatment moderate/severe exacerbations FF/UMEC/VI (100/62.5/25mcg) when compared with two, once-daily dual COPD therapies

The study showed reduction AECOPD: 1) 15% reduction for FF/UMEC/VI compared with Breo Ellipta (FF/VI,100/25mcg); 0.91 vs 1.07 per year; p<0.001 2) 25% reduction for FF/UMEC/VI compared with Anoro Ellipta (UMEC/VI, 62.5/25mcg); 0.91 vs 1.21 per year; p<0.001



### **Risk of using ICS?**

# Risk of new-onset pneumonia increased with increasing ICS dose<sup>1</sup>

 This large (n=135,445), retrospective, cohort analysis of patients newly diagnosed with COPD (Jan 2005–Dec 2010) showed that risk of pneumonia increased as ICS dose increased



#### Pairwise comparisons between the three ICS dose levels were all significantly different at p<0.01

\*Patient years

CI, confidence interval; COPD, chronic obstructive pulmonary disease; ICS, inhaled corticosteroid

# ICS use has been associated with an increased risk of NTM-PD<sup>1</sup>

- A population-based nested case–control study using linked laboratory and health administrative databases in Ontario, Canada analyzed 2,966 patients with NTM-PD and 327 patients with TB
- Current ICS use was associated with NTM-PD compared with nonuse (aOR 1.86, 95% CI 1.60, 2.15) and was statistically significant for fluticasone (aOR 2.09, 95% CI 1.80, 2.43) but not for budesonide (aOR 1.19, 95% CI 0.97, 1.45)
- A strong dose–response relationship between incident NTM-PD and cumulative ICS dose over 1 year was observed. However, no significant association between current ICS use and TB (aOR 1.43, 95% CI 0.95, 2.16) was observed

OR for NTM-PD by tertiles of cumulative ICS dose in the year prior to index date versus no ICS use



aOR, adjusted OR; CI, confidence interval; ICS, inhaled corticosteroid; NTM-PD, nontuberculous mycobacterial pulmonary disease; OR, odds ratio; TB, tuberculosis Source: 1. Brode et al. Eur Respir J. 2017 ;50:1700037
# What puffer for what patient?

# **COPD** Phenotypes

#### **Blue Blowers**

#### **Pink Puffers**





The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

#### Susceptibility to Exacerbation in Chronic Obstructive Pulmonary Disease

John R. Hurst, M.B., Ch.B., Ph.D., Jørgen Vestbo, M.D., Antonio Anzueto, M.D.,

| Table 3. Factors Associated with Increased Exacerbation Frequency in the Stepwise Multivariate Model.* |                         |         |                        |         |                        |                              |         |
|--------------------------------------------------------------------------------------------------------|-------------------------|---------|------------------------|---------|------------------------|------------------------------|---------|
| Factor                                                                                                 | Number of Exacerbations |         |                        |         |                        | P Value for<br>Overall Model |         |
|                                                                                                        | ≥2 vs. 0                |         | 1 vs. 0                |         | ≥2 vs. 1               |                              |         |
|                                                                                                        | odds ratio<br>(95% Cl)  | P value | odds ratio<br>(95% CI) | P value | odds ratio<br>(95% CI) | P value                      |         |
| Exacerbation during previous yr — any vs. none                                                         | 5.72 (4.47–7.31)        | <0.001  | 2.24 (1.77–2.84)       | <0.001  | 2.55 (1.96–3.31)       | <0.001                       | <0.001  |
| FEV <sub>1</sub> — per 100-ml decrease                                                                 | 1.11 (1.08–1.14)        | < 0.001 | 1.06 (1.03–1.08)       | < 0.001 | 1.05 (1.02–1.09)       | < 0.001                      | < 0.001 |
| SGRQ score for COPD — per<br>increase of 4 points                                                      | 1.07 (1.04–1.10)        | <0.001  | 1.01 (0.99–1.04)       | 0.38    | 1.06 (1.03–1.09)       | <0.001                       | <0.001  |
| History of reflux or heartburn — yes vs. no                                                            | 2.07 (1.58–2.72)        | <0.001  | 1.61 (1.23–2.10)       | <0.001  | 1.29 (0.97–1.70)       | < 0.005                      | <0.001  |
| White-cell count — per increase of 1×10³/mm³                                                           | 1.08 (1.03–1.14)        | 0.002   | 1.02 (0.97–1.08)       | 0.45    | 1.06 (1.01–1.12)       | <0.001                       | 0.007   |

\* FEV<sub>1</sub> denotes forced expiratory volume in 1 second, and SGRQ St. George's Respiratory Questionnaire.

Open Access Full Text Article

ORIGINAL RESEARCH

# Predicting frequent COPD exacerbations using primary care data

This article was published in the following Dove Press journal: International Journal of COPD 9 November 2015

Table 4 Significant multivariable predictors of two or more COPD exacerbations in the outcome year in the total population data set (N=16,565)

| Covariate                                       | Odds ratio (95% CI) |  |  |  |
|-------------------------------------------------|---------------------|--|--|--|
| Exacerbations in the baseline year              |                     |  |  |  |
| 0                                               | 1.00                |  |  |  |
| I                                               | 2.42 (2.18-2.69)    |  |  |  |
| 2                                               | 4.39 (3.89-4.95)    |  |  |  |
| 3                                               | 7.28 (6.25-8.48)    |  |  |  |
| ≥4                                              | 17.83 (15.12-21.03) |  |  |  |
| FEV <sub>1</sub> % predicted (per 10% decrease) | 1.10 (1.07-1.12)    |  |  |  |
| Age (per 10 years)                              | 1.43 (0.92-2.23)    |  |  |  |
| Age <sup>2</sup> (per 10 years)                 | 0.97 (0.93-1.00)    |  |  |  |
| Height (per 10 cm)                              | 0.89 (0.85-0.93)    |  |  |  |
| Eosinophilia in noncurrent smokers              | 1.29 (1.10-1.51)    |  |  |  |
| Asthma                                          | 1.34 (1.23-1.46)    |  |  |  |
| Nonallergic rhinitis                            | 1.35 (1.15–1.59)    |  |  |  |
| Nasal polyps                                    | 1.39 (1.09–1.78)    |  |  |  |
| Ischemic heart disease                          | 1.12 (1.01-1.25)    |  |  |  |
| Anxiety or depression                           | 1.11 (1.02–1.22)    |  |  |  |
| GERD                                            | 1.18 (1.05–1.34)    |  |  |  |
| Model C statistic (95% CI)                      | 0.751 (0.742-0.761) |  |  |  |

Note: Noncurrent smokers included ex-smokers and never smokers.

**Abbreviations:** CI, confidence interval; FEV, forced expiratory volume in I second; GERD, gastroesophageal reflux disease.

#### **COPD: Moving Beyond the FEV<sub>1</sub>**



\*Disease attributes that describe the diverse symptoms and outcomes of patients with COPD

Chen X et al. Front. Med. 2013;7(4):425-432. Oga T et al. Chest. 2005;128:62-69. Westwood M et al. Respir Res. 2011;12:40.

# **The Dutch Hypothesis**



P3333. Postma DS. Genetics of asthma and COPD.



### Training Patients on Correct Device Technique

#### Why is it important?

- High rate of inhaler technique errors
  - Patients don't recognize their technique errors
  - Most errors can be easily corrected
- HCP assessment identifies incorrect technique and patients who warrant device change
  - Important, given diversity of delivery systems and patients

#### How should it be done?

- Quickly, at outpatient visits
- Continually
  - Successful technique not durable
  - Across care settings/ during transitions of care
- Combining verbal coaching/ technique demonstration

# 4<sup>th</sup> Line Treatment

#### Effect of Roflumilast and Inhaled Corticosteroid/Long-Acting β<sub>2</sub>-Agonist on Chronic Obstructive Pulmonary Disease Exacerbations (RE<sup>2</sup>SPOND) A Randomized Clinical Trial

Fernando J. Martinez<sup>1</sup>, Klaus F. Rabe<sup>2,3,4</sup>, Sanjay Sethi<sup>5</sup>, Emilio Pizzichini<sup>6</sup>, Andrew McIvor<sup>7</sup>, Antonio Anzueto<sup>8,9</sup>, Vijay K. T. Alagappan<sup>10</sup>, Shahid Siddiqui<sup>10</sup>, Ludmyla Rekeda<sup>11</sup>, Christopher J. Miller<sup>10</sup>, Sofia Zetterstrand<sup>12</sup>, Colin Reisner<sup>13</sup>, and Stephen I. Rennard<sup>14,15</sup>

#### RESEARCH



**Open Access** 

#### Reduction of exacerbations by the PDE4 inhibitor roflumilast - the importance of defining different subsets of patients with COPD

Stephen I Rennard<sup>1\*</sup>, Peter MA Calverley<sup>2</sup>, Udo M Goehring<sup>3</sup>, Dirk Bredenbröker<sup>3</sup>, Fernando J Martinez<sup>4</sup>



Favors roflumilast

Favors placebo

#### **Azithromycin for Prevention of Exacerbations of COPD**





ATS/ERS: "Action plans" for COPD

- The following guidelines are recommended:
  - Educational component of pulmonary rehabilitation should emphasize self-management skills
  - Self-management should include action plan for early recognition and treatment of exacerbation

# Self-management And Hospitalization



Bourbeau J, et al. Arch Int Med. 2003;163:585-591.





#### COPD ACTION PLAN

| Client Name: | Date:   |
|--------------|---------|
| Physician:   | Phone#: |

After Hours Phone #:



You have been diagnosed with COPD (chronic obstructive pulmonary disease). COPD has 2 states:

- 1. You are stable
- 2. You are having a flare up



#### How to tell if you are having a flare up

A flare up may occur after you get a cold, get run down or are exposed to air pollution or very hot or cold weather. There are 3 things that define a flare up:

- 1. Increased shortness of breath from your usual level
- 2. Increased amount of sputum from your normal level
- 3. Sputum changes from its normal colour to yellow, green or rust colour



If any 2 or all of these symptoms persist for 48 or more hours do the following: (Your physician will check the desired action plan components and prescribe as selected)

Take your rescue inhaler 2-4 puffs as needed (up to 4-6 times per day) for shortness of breath.

Contact your family doctor immediately.

Take your prescribed antibiotic for a COPD flare up (see over).

Take your prescribed prednisone for a COPD flare up (see over).

Contact your doctor if you feel worse or do not feel better after 48 hours of treatment

| Other |
|-------|
|       |

If you are extremely breathless, anxious, panicky, confused, agitated, fearful or drowsy, call 911 for an ambulance to take you to the emergency room.

Physician Signature\_\_\_\_\_

| Client/Caregiver Signature |               | Please turn over                           |
|----------------------------|---------------|--------------------------------------------|
| pacificlung                | CENTRE CENTRE | THE LUNG ASSOCIATION "<br>British Columbia |

# Vitals signs as early indicators of AECOPD



# COPD case 3

- Patient (48yrs), heavy smoker with frequent "winter chest colds"
- Morning sputum (clear, couple of tablespoons full) with recent problems doing stairs & hills
- ROS: hayfever in spring
- GP diagnose with asthma: on ICS & Ventolin

|                      | Pred      | Pre Meas   | %Pred | Post Meas  | Post/pred | %Chng |
|----------------------|-----------|------------|-------|------------|-----------|-------|
| Date                 |           | 2003/01/15 |       | 2003/01/15 |           |       |
| Spirometry           |           |            |       |            |           |       |
| FVC[]                | 5.15      | 6.04       | 117   | 5.76       | 112       | -5    |
| FEV 1[I]             | 4.01      | 1.90       | 47    | 2.24       | 56        | 18    |
| FEV 1 % FVC          | 77.75     | 31.39      | 40    | 38.94      | 50        | 24    |
| FEF 75-25[I/s]       | 3,68      | 0.73       | 20    | 0.71       | 19        | -3    |
| PEF[/s]              | 9.27      | 3.14       | 34    | 5.52       | 60        | 76    |
| FVC IN[I]            | 5.15      | 6.05       | 118   | 4.72       | 92        | -22   |
| Bodyplethysmography  |           |            |       |            |           |       |
| VC[I]                | 5.15      | 6.02       | 117   |            |           |       |
| IC[1]                |           | 4.99       |       |            |           |       |
| ERV[1]               | 1.46      | 1.02       | 70    |            |           |       |
| RV[I]                | 2.50      | 5.20       | 208   |            |           |       |
| TGV (FRC)[I]         | 4.01      | 6.23       | 155   |            |           |       |
| TLC[I]               | 7.26      | 11.22      | 155   |            |           |       |
| RV % TLC[%]          | 36.59     | 46.38      | 127   |            |           |       |
| Diffusion SB         |           |            |       |            |           |       |
| DLCO SB [ml/min/mm]  | lg]30.53  | 16.88      | 55    |            |           |       |
| DLCO/VA [ml/min/mmHg | g/l] 4.32 | 2.22       | 51    |            |           |       |
| VA[1]                | 7.47      | 7.61       | 102   |            |           |       |
| VIN[]                | 5.15      | 5.64       | 110   |            |           |       |
| Airways Resistance   |           |            |       |            |           |       |
| R tot[cmH2O*s/I]     | 3.06      | 4.87       | 159   |            |           |       |
| G tot [l/(cmH2O*s)]  | 0.33      | 0.21       | 63    |            |           |       |
| SR tot               | 12.00     | 33,49      | 279   |            |           |       |
| SG tot [1/(cmH2O*s)] | 0.08      | 0.03       | 36    |            |           |       |

What is the diagnosis and how are going to treat the patient





# COPD Case 3

- About 15% of COPD patients
- Have a significant reversible component to airways obstruction (400ml or 15% or 200ml and 12% on 2 occasions)
- May have eosinophilia (3%+) and increase IgE (>100)
- Tend to have more AE
- Prognosis similar or even better than pure COPD

# Defining the Asthma-COPD overlap syndrome in a COPD cohort

Borja G Cosio, MD, Joan B Soriano, MD, Jose Luis Lopez-Campos, MD, et al

Table 1. Major and minor criteria used to define ACOS

| Major criteria                        | Minor criteria                      |
|---------------------------------------|-------------------------------------|
| Previous history of asthma            | Immunoglobulin E>100 IU, or         |
| Bronchodilator response to salbutamol | History of atopy,                   |
| higher than 15% and 400 ml            | Two separated bronchodilator        |
|                                       | responses to salbutamol higher than |
|                                       | 12% and 200 ml                      |
|                                       | Blood eosinophils>5%                |

<u>Chest.</u> 2015 Aug 20. doi: 10.1378/chest.15-1055

### Unique issues in COPD Management in the Inner City

# **Complex Lung disease**

- Smoking related COPD/chronic bronchitis
- Bronchiectasis from frequent destructive infections
- Interstitial lung fibrosis smoking "drugs"
- HIV related lung disease
  - Emphysema, pulmonary hypertension, infections (PJP, fungal)
- Dysregulated control of breathing

#### Acute exacerbations of COPD: what pulls the trigger?



### 53 yr Female with history of SUD/HIV+



#### 53 yr Female with history of SUD/HIV+



#### Management strategy. Choose one or any number if appropriate.



Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

## Management Strategy

- Identify micro-organism(s) involved in AE
  - Sputums (also AFB's)
  - Induced sputum/Bronchoscopy
- Treat for at least 2 weeks with appropriate AB
- Consider suppressive therapy if frequent AE (macrolides/doxy) on appropriate COPD treatement
- Manage co-morbidities
- Diet and social support

#### **Substance Abuse Disorder and COPD**

Adamson et al



International Journal of COPD 2016:11 61–71

#### Management of Inner-city COPD

- Team approach:
  - Family physician/nurse practitioner
  - Specialist/GIM or Respirogist
  - Respiratory therapist
  - Dietician
  - Social worker
  - Addiction specialist
  - Mental health specialist

#### Impact of a COPD comprehensive case management program on hospital length of stay and readmission rates



#### 1564 admissions over 2 years

Alshabanat et al International Journal of COPD 2017:12 961-971

#### **Trends in Management of COPD:**

#### **Individualized treatment**



**Figure 3.** Changing approaches to chronic obstructive pulmonary disease pharmacotherapy. Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2006 recommended an FEV<sub>1</sub>-based approach for assessment and treatment, whereas GOLD 2011 recommended a clinical phenotyping approach. In the future, treatable traits may be used, with endotype and/or disease activity biomarkers.

# Biomarkers: Can eosinophils inform treatment choice and ICS use in COPD?

#### Higher sputum eosinophils are associated with increased COPD exacerbation risk



# Blood eosinophil level could be a potential biomarker of response to ICS in COPD

- Post-hoc analysis of data from 2 randomized, double-blind, 1-year studies of FF/VI (50/25, 100/25, and 200/25 μg q.d.) versus VI 25 μg q.d.
- Study assessed treatment differences in exacerbation rates after stratifying by blood eosinophil count (2% threshold)



COPD, chronic obstructive pulmonary disease; FF, fluticasone furoate; ICS, inhaled corticosteroid; q.d., once daily; VI, vilanterol

# Summary

- COPD is currently the commonest reason for visiting ER in BC
- Management is multi-layered and patient specific
- ICS's is over-used and has significant side effects
- Management of co-morbidities is part & parcel of the management plan
- "Inner city COPD" is complex and need a team approach


## Antibiotic Prevention of Acute Exacerbations of COPD

Richard P. Wenzel, M.D., Alpha A. Fowler III, M.D., and Michael B. Edmond, M.D., M.P.H., M.P.A. N Engl J Med 2012;367:340-7.

Table 1. Proposed Criteria for Selecting Patients with COPD for Long-Term Azithromycin Prophylaxis.

History of COPD with ≥2 acute exacerbations in the previous year Compliance with current drug regimen and proper use of inhaler Pulse <100 beats per minute Corrected QT interval of <450 msec on electrocardiography Aminotransferase levels <3 times the upper limit of normal range No use of drugs known to cause QT prolongation No decrement in hearing on formal audiography No allergy to macrolides Sputum culture negative for mycobacteria No high baseline risk of cardiovascular disease